Seatown Rock with Piddock Holes

A contributory factor in the erosion of the beach rock at Seatown in Dorset is the burrowing activity of the marine bivalve mollusc called the piddock. Low on the shore millions of holes in the soft calcareous mudstones are evidence for the burrows made by Pholas dactylus. The holes are almost circular in shape reaching up to two centimetres in diameter,  and can occur as a scatter or as dense populations wherever the rock remains wet between the tides. They seem to prefer the darker layers rather than the alternating light layers – although they are found in both. The rock on the east Seatown shoreline is composed of alternating almost horizontal layers of pale (carbonate-rich and carbon-poor) mudstone, and darker (carbon–rich and carbonate-poor) mudstone from the Belemnite Marl Member of the Charmouth Mudstone Formation.

Where successive generations of this boring mollusc have colonised the strata, the mudstone has been reduced to an irregular honeycombed mass. Most of the holes seem unoccupied and small pieces of orange-coloured gravel have filled them. In some burrows the empty white shells of the piddock can still be seen. Some of the burrows are undoubtedly still occupied but I did not have an opportunity to locate any for photographs since the area was only exposed for half an hour. The shells of the living animals may not have been visible because they tend to lie deep within the burrow but the living specimens can often be detected by the fact that their siphons extend from the shell to the surface and these periodically squirt out water during low-tide.

Pebbles and beach stones which have neat circular holes in them are frequently wave-washed and beach-tumbled pieces of rock that have broken away from intertidal rock layers that have been riddled with burrows made by rock-boring molluscs such as piddocks, in the way shown in these photographs from Seatown in Dorset, England, along the World Heritage Jurassic Coast.

Seatown Dissected Mudstone Layers

Coastal mudstone layers eroding into long fingers of rock separated by narrow sinuous channels

The rocks low on the beach at Seatown in Dorset are wearing away in a most peculiar fashion. In an earlier post I showed narrow sinuous channels cutting their way down through the mudstone between tide levels and I wondered how they had formed and what had influenced their shape. These are my thoughts and speculations about the processes contributing to these formations.

At one point along this stretch of shore, the narrow winding channels can be seen dissecting the rock layers into a number of adjoined parallel bars  (a bit like the fingers of a Kit-Kat). So what might be going on?

I have noticed by looking at the cliffs along the western and eastern shores at Seatown that there seems to be a propensity for this kind of medium to naturally form polygonal cracks or fractures once exposed to air and losing moisture. Below are three random examples of fracture patterns in cliff materials.

I think that the same phenomenon is a feature of the exposed layers of mudstone bedrock that outcrop inter-tidally. It is just possible to see the faint lines of these natural cracks in some of the close-up photographs below. Most of these original cracks are obscured because they have become the preferred location for Polydora bristle worms to occupy and create burrows. Although only a few millimetres across, the holes made by burrow-making activity have weakened the fracture lines, widened and extended them. At the same time as this bio-erosion activity is going on, continual swash and backwash by waves, and attrition by rolling gravel and pebbles, has smoothed and lowered the surface by physical destructive processes. (Chemical erosion plays a part too but will need a lot more explanation another time.)

As the combined physical and bio-erosion processes continue, the depressions where the worms burrow increase in size and can join up to form channels.

Once a channel is open, water and hard transported materials like rocks, pebbles gravel, and sand, can move rapidly through the channel in an upshore direction with each wave that breaks on the beach; and in a seaward direction as the water drains back down the shore. This physical action accelerates the erosion of the channels which speedily become deeper and wider to such an extent that they can carve the rock into distinct blocks. Smaller channels can form diagonally, at an angle to the shoreline, as they follow the conjoined outlines of the burrow-filled rock fractures. However the main force of the waves on the beach is perpendicular to the shoreline. This means that the channels formed by chance in that orientation are the ones that are most affected and enhanced by the swash and backwash of the waves.

The images also show the rock on the east Seatown shoreline is composed of alternating almost horizontal layers of pale (carbonate-rich and carbon-poor) mudstone, and darker (carbon–rich and carbonate-poor) mudstone from the Belemnite Marl Member of the Charmouth Mudstone Formation. The uppermost layers being weakened by various erosional processes that have effectively divided them up into strips, erode and break away more easily on the shoreward edge parallel to the shore.

There are more contributing factors to rock erosion on the coastline than I have been able to talk about here and I will explore them further in later posts.

All the photos are shown again below and you can click on any thumbnail to see a larger version of the image in a gallery format